

Mark Scheme (Results)

Summer 2021

Pearson Edexcel International GCSE
In Chemistry (4CH1) Paper 1C and Science
(Double Award) (4SD0) Paper 1C

| Question number | Answer                                                           |                  | Notes                                              | Marks   |
|-----------------|------------------------------------------------------------------|------------------|----------------------------------------------------|---------|
| 1 (a)           | Information                                                      | Substance        | ALLOW correct                                      | 5       |
|                 | a good conductor of electricity                                  | copper           | formulae                                           |         |
|                 | an element that has a basic oxide                                | copper           |                                                    |         |
|                 | a substance used as a fuel                                       | methane          |                                                    |         |
|                 | a major cause of acid rain                                       | sulfur dioxide   |                                                    |         |
|                 | a non-metallic element<br>that is a solid at room<br>temperature | iodine           |                                                    |         |
|                 |                                                                  |                  |                                                    |         |
|                 |                                                                  |                  |                                                    |         |
| (b)             | A description which refers to the                                | following points |                                                    | 2       |
|                 | M1 bubble/add (the gas/carbon of limewater                       | dioxide) into    | ACCEPT calcium hydroxide                           |         |
|                 | M2 (limewater) turns cloudy/mill                                 | ky               | ACCEPT white precipitate                           |         |
|                 |                                                                  |                  | M2 dep on use of limewater/calcium hydroxide in M1 |         |
|                 |                                                                  |                  |                                                    |         |
|                 |                                                                  |                  |                                                    |         |
|                 |                                                                  |                  |                                                    | Total 7 |

| Quest<br>numb | ion<br>er |                     | Answer           |                    | Notes                                 | Marks |
|---------------|-----------|---------------------|------------------|--------------------|---------------------------------------|-------|
| 2 (a)         | (i)       | Sub-atomic particle | Relative<br>mass | Relative<br>charge | 1 mark for each correct answer        | 3     |
|               |           | electron            | 0.0005           | -1                 | ACCEPT minus one REJECT - unqualified |       |
|               |           | proton              | 1                | +1                 | ACCEPT one<br>ALLOW +1                |       |
|               |           | neutron             | 1                | 0                  | ACCEPT zero/none/ no charge           |       |
|               | (ii)      | nucleus             |                  |                    |                                       | 1     |
| (b)           | (i)       | U                   |                  |                    |                                       | 1     |
|               | (ii)      | 25                  |                  |                    |                                       | 1     |
|               | (iii)     | w                   |                  |                    |                                       | 1     |
|               | (iv)      | Y and Z             |                  |                    |                                       | 1     |
|               |           |                     |                  |                    |                                       |       |

| Question number | Answer                                                                                                                        | Notes                                                   | Marks    |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|----------|
| 2 (c)           | <ul> <li>sum of masses multiplied by percentages</li> <li>division by 100</li> <li>answer given to 1 decimal place</li> </ul> | Correct answer of 20.2 with or without working scores 3 | 3        |
|                 | Example calculation                                                                                                           |                                                         |          |
|                 | <b>M1</b> (91.2 x 20) + (8.80 x 22) <b>OR</b> 2017.6                                                                          | ACCEPT 2018                                             |          |
|                 | <b>M2</b> 2017.6 ÷ 100 <b>OR</b> 20.176                                                                                       | ACCEPT 20.18                                            |          |
|                 | M3 20.2 OR answer from M2 given to 1d.p.                                                                                      |                                                         |          |
|                 |                                                                                                                               | correct answer without working scores 3                 |          |
|                 |                                                                                                                               | 20.176 and 20.18 without working score 2                |          |
|                 |                                                                                                                               | 2020 scores <b>M1</b> and <b>M3</b>                     |          |
|                 |                                                                                                                               | 20 without working scores 0                             |          |
|                 |                                                                                                                               | 20 with correct working scores 2                        |          |
|                 |                                                                                                                               |                                                         |          |
|                 |                                                                                                                               |                                                         |          |
|                 |                                                                                                                               |                                                         |          |
|                 |                                                                                                                               |                                                         | Total 11 |

|   | Questi<br>numb |      | Answer                                                                                              | Notes                                                          | Marks   |
|---|----------------|------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------|
| 3 | (a)            | (i)  | diffusion                                                                                           |                                                                | 1       |
|   |                | (ii) | Any two from                                                                                        | ALLOW shake/swirl                                              | 2       |
|   |                |      | M1 stir (the mixture)                                                                               | ALLOW any description of heating                               |         |
|   |                |      | M2 heat (the mixture)  M3 grind the sugar or break into smaller pieces or increase its surface area |                                                                |         |
|   | (b)            | (i)  | (simple) distillation                                                                               | REJECT fractional<br>distillation<br>ALLOW distilling<br>OWTTE | 1       |
|   |                | (ii) | An explanation that links the following two points                                                  |                                                                | 2       |
|   |                |      | M1 (water/ vapour/ steam / gas) is cooled                                                           |                                                                |         |
|   |                |      | M2 and condenses OR in the condenser                                                                |                                                                |         |
|   |                |      |                                                                                                     |                                                                | Total 6 |

| Question<br>number | Answer                                                                                                                                  | Notes                                                                          | Marks    |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------|
| 4 (a) (i)          | A description including any three of the following                                                                                      | M1 and M2 can be scored from a labelled diagram                                | 3        |
|                    | M1 pour some solvent into a beaker<br>/chromatography tank                                                                              | ALLOW any named solvent                                                        |          |
|                    | M2 place the paper in the solvent so that the food colourings are above the level of the solvent                                        |                                                                                |          |
|                    | M3 leave the paper until the solvent reaches the level shown in the diagram/ has moved to near the top of the paper OWTTE               |                                                                                |          |
|                    | M4 take the paper out and leave to dry                                                                                                  |                                                                                |          |
| (ii)               | one/1                                                                                                                                   |                                                                                | 1        |
| (iii)              | (F/it is) insoluble (in the solvent)/ does not dissolve (in the solvent)                                                                |                                                                                | 1        |
| (iv)               | M1 E and H                                                                                                                              |                                                                                | 2        |
|                    | $M2$ they contain a dye that moved the furthest (distance up the paper)/ is closest to the solvent front / has the greatest $R_f$ value | M2 dep on M1                                                                   |          |
| (b)                | M1 distance moved by solvent = 59-61mm and distance moved by the dye = 37-41mm                                                          | ALLOW distances in cm e.g. 6cm and 4cm                                         | 3        |
|                    |                                                                                                                                         | If paper has been<br>printed on A4 distances<br>will be 51-53mm and<br>33-37mm |          |
|                    | <b>M2</b> distance moved by the dye ÷ distance moved by the solvent ≈ 0.67                                                              |                                                                                |          |
|                    | M3 (the dye in food colouring) G                                                                                                        |                                                                                |          |
|                    |                                                                                                                                         | ALLOW alternative methods                                                      |          |
|                    |                                                                                                                                         |                                                                                | Total 10 |

| Question number | Answer                                                                                      |                               | Notes                          | Marks |
|-----------------|---------------------------------------------------------------------------------------------|-------------------------------|--------------------------------|-------|
| 5 (a) (i)       |                                                                                             | 6.11                          |                                | 3     |
|                 | molecular formula                                                                           | C <sub>2</sub> H <sub>6</sub> |                                |       |
|                 | empirical formula                                                                           | ethane<br>CH₃                 | Penalise incorrect use         |       |
|                 | empiricat formuta                                                                           | Н Н                           | of case, superscripts          |       |
|                 | displayed formula                                                                           | H - C - C - H<br>H H          |                                |       |
|                 |                                                                                             |                               |                                |       |
| (ii)            | <b>2</b> C <sub>2</sub> H <sub>6</sub> + <b>7</b> O <sub>2</sub> → <b>4</b> CO <sub>2</sub> | + <b>6</b> H <sub>2</sub> O   | ACCEPT multiples and fractions | 1     |
| (iii)           | Any two from                                                                                |                               |                                | 2     |
|                 | M1 carbon monoxide/CO                                                                       |                               |                                |       |
|                 | M2 carbon/C                                                                                 |                               | ALLOW soot                     |       |
|                 | M3 water (vapour)/steam/H <sub>2</sub> O                                                    |                               | IGNORE carbon dioxide          |       |
|                 |                                                                                             |                               |                                |       |
|                 |                                                                                             |                               |                                |       |
|                 |                                                                                             |                               |                                |       |
| (b) (i)         | A addition                                                                                  |                               |                                | 1     |
| (5) (1)         | B is incorrect as it is not a deco                                                          | mposition reaction            |                                | ·     |
|                 | C is incorrect as no solid precip<br>D is incorrect as it is not a subs                     | itate is produced             |                                |       |
|                 |                                                                                             |                               |                                |       |
| (ii)            | Any two from                                                                                |                               | Do not accept displayed        | 2     |
|                 | M1                                                                                          |                               | formulae of cyclic alkanes     |       |
|                 | H H H H H H H H H H H H H H H H H H H                                                       |                               |                                |       |
|                 |                                                                                             |                               |                                |       |

|       | M2 $ \begin{array}{ccccccccccccccccccccccccccccccccccc$ | ALLOW cis-trans (E/Z) isomers of but-2-ene for both marks |   |
|-------|---------------------------------------------------------|-----------------------------------------------------------|---|
| (iii) | H H H H H H H Isomers                                   | ALLOW isomerism                                           | 1 |
|       |                                                         |                                                           |   |

| Question number | Answer                                                                                                                                                                | Notes                                          | Marks    |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|----------|
| 5 (c) (i)       | H CH <sub>3</sub> I I C - C I I H H I n  M1 correct repeat unit  M2 extension bonds, brackets and n after brackets  A discussion which refers to the following points | If double bond between carbon atoms scores 0   | 3        |
|                 | M1 polymers/poly(propene) will remain in landfill indefinitely OWTTE  M2 (as they) are inert /unreactive/do not biodegrade  M3 burning produces toxic gases           | <b>ALLOW</b> burning produces greenhouse gases |          |
|                 |                                                                                                                                                                       |                                                | Total 15 |

| Question number | Answer                                                                                                                                                                                                            | Notes                                                                                                                            | Marks |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------|
| 6 (a) (i)       | Any 3 from                                                                                                                                                                                                        |                                                                                                                                  | 3     |
|                 | M1 effervescence/bubbles/fizzing                                                                                                                                                                                  |                                                                                                                                  |       |
|                 | M2 moves                                                                                                                                                                                                          | moves on surface scores M2 and M3                                                                                                |       |
|                 | M3 floats                                                                                                                                                                                                         | Scores M2 and M3                                                                                                                 |       |
|                 | M4 disappears/gets smaller                                                                                                                                                                                        | ALLOW dissolves                                                                                                                  |       |
|                 | M5 vapour trail/steam                                                                                                                                                                                             | IGNORE melts/heat<br>produced<br>IGNORE any reference<br>to indicators                                                           |       |
| (ii)            | An explanation that links the following two points                                                                                                                                                                |                                                                                                                                  | 2     |
|                 | M1 the universal indicator turns purple/blue                                                                                                                                                                      |                                                                                                                                  |       |
|                 | M2 (because) OH <sup>-</sup> /hydroxide ions are present                                                                                                                                                          | ALLOW an alkaline<br>solution /an alkali is<br>produced / a solution<br>of high pH is formed                                     |       |
| (iii)           | 2Li + 2H₂O → 2LiOH + H₂                                                                                                                                                                                           | ALLOW multiples and fractions                                                                                                    | 2     |
|                 | M1 all formulae correct                                                                                                                                                                                           |                                                                                                                                  |       |
|                 | M2 balancing of correct formulae                                                                                                                                                                                  | M2 dep on M1                                                                                                                     |       |
| (b) (i)         | An explanation that links the following two points                                                                                                                                                                |                                                                                                                                  | 2     |
|                 | <ul> <li>M1 to remove any other ions/chemicals/ impurities/ contaminants/ compounds/substances (that may be on the wire)</li> <li>M2 (so that) they do not interfere with/mask the colour of the flame</li> </ul> | ALLOW (so that) they<br>do not affect the<br>result (of the test)<br>ALLOW (remove<br>substances) that could<br>colour the flame |       |

| (ii) | D yellow                                                                                                                                                              | 1 |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|      | A is incorrect as sodium ions do not give a green flame B is incorrect as sodium ions do not give a lilac flame C is incorrect as sodium ions do not give a red flame |   |

| Question number | Answer                                                                              | Notes                            | Marks    |
|-----------------|-------------------------------------------------------------------------------------|----------------------------------|----------|
| 6 (c) (i)       | K <sup>+</sup> and SO <sub>4</sub> <sup>2-</sup>                                    |                                  | 1        |
| (ii)            | An explanation that links the following four points                                 |                                  | 4        |
|                 | <b>M1</b> (potassium sulfate) has a giant (ionic) structure /lattice                |                                  |          |
|                 | <b>M2</b> electrostatic attraction between oppositely charged ions                  |                                  |          |
|                 | M3 (ionic bonds or forces / attractions between ions) are strong                    | ionic bonds are strong scores M3 |          |
|                 | <b>M4</b> a large amount of energy is needed to overcome the forces/break the bonds |                                  |          |
|                 |                                                                                     |                                  | Total 15 |

| Question number | on<br>er | Answer                                     |      | Notes                                         | Marks |
|-----------------|----------|--------------------------------------------|------|-----------------------------------------------|-------|
| 7 (a)           | (i)      | → magnesium chloride + hydrogen            |      | ACCEPT in either order                        | 1     |
| (b)             | (i)      |                                            |      | 1                                             | 2     |
|                 |          | temperature of the acid at the start in °C | 22.4 |                                               |       |
|                 |          | highest temperature reached in °C          | 43.2 | ALLOW ECF from incorrect starting temperature |       |
|                 |          | temperature rise in °C                     | 20.8 | Lemperature                                   |       |
|                 |          |                                            |      |                                               |       |

| Question number | Answer                                                                                                                                                                                                          | Notes                                                              | Marks   |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------|
| 7 (ii)          | <ul> <li>substitute correct values into Q = mcΔT</li> <li>evaluation</li> </ul>                                                                                                                                 | Correct answer of 2184 or 2194 without working scores 2            | 2       |
|                 | Example calculation                                                                                                                                                                                             |                                                                    |         |
|                 | <b>M1</b> Q = 25 x 4.2 x 20.8                                                                                                                                                                                   | ALLOW 25.12g for m                                                 |         |
|                 | <b>M2</b> 2184 (J)                                                                                                                                                                                              | ACCEPT any number of sig figs except 1 ALLOW ECF from M1           |         |
| (iii)           | <ul> <li>find the amount of magnesium in moles</li> <li>divide Q by n</li> <li>convert answer in J/mol to kJ/mol</li> <li>answer including sign</li> </ul> Example calculation M1 n(Mg) = 0.12 ÷ 24 OR 0.005(0) |                                                                    | 4       |
|                 | <b>M2</b> Q ÷ n <b>OR</b> 2184 ÷ 0.005(0) <b>OR</b> 436,800 (J/mol)                                                                                                                                             | <b>ACCEPT</b> use of 2180 or 2200                                  |         |
|                 |                                                                                                                                                                                                                 | ALLOW ECF on incorrect answer to (ii) and/or M1                    |         |
|                 | <b>M3</b> 436,800 ÷ 1000 <b>OR</b> 436.8 (kJ/mol)                                                                                                                                                               | ALLOW ECF on incorrect answer to M2                                |         |
|                 | <b>M4</b> – 436.8 (kJ/mol)                                                                                                                                                                                      | ALLOW ECF on incorrect answer to M3                                |         |
|                 |                                                                                                                                                                                                                 | Correct answer with minus sign and without working scores 4        |         |
|                 |                                                                                                                                                                                                                 | Correct answer without minus sign and without working scores 3     |         |
|                 |                                                                                                                                                                                                                 | ACCEPT any number of sig figs except 1 throughout (ii)             |         |
|                 |                                                                                                                                                                                                                 | -438.8 or-438.9 also<br>scores 4 (from 5.12g<br>and 2194J in (ii)) |         |
|                 |                                                                                                                                                                                                                 |                                                                    | Total 9 |

| Question number | Answer                                                                                          | Notes                                                                          | Marks    |
|-----------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------|
| 8 (a)           | A description which refers to the following six points                                          |                                                                                | 6        |
|                 | Test for ammonium ions:                                                                         |                                                                                |          |
|                 | M1 add sodium hydroxide (solution) (and warm)                                                   | ALLOW other alkalis                                                            |          |
|                 | M2 test the gas with (damp) (red) litmus paper/(damp) universal indicator paper                 | No M2 or M3 if solution<br>tested with litmus/<br>universal indicator<br>paper |          |
|                 | M3 (litmus) turns blue / (universal indicator) turns blue/purple (if ammonium ions are present) | paper                                                                          |          |
|                 | Test for sulfate ions:                                                                          |                                                                                |          |
|                 | M4 add (dilute hydrochloric/nitric) acid                                                        | M4 and M5 can be in either order                                               |          |
|                 | M5 add barium chloride (solution) /barium nitrate (solution)                                    | ettrier order                                                                  |          |
|                 | M6 white precipitate (if sulfate ions are present)                                              |                                                                                |          |
|                 |                                                                                                 | No M4 or M6 if sulfuric<br>acid added<br>M6 dep on M5                          |          |
| (b) (i)         | neutralisation                                                                                  | ALLOW acid-base OR acid-alkali                                                 | 1        |
| (ii)            | $2NH_3 + H_2SO_4 \rightarrow (NH_4)_2SO_4$                                                      | ALLOW multiples                                                                | 1        |
| (iii)           | M1 3 bonding pairs correct                                                                      |                                                                                | 2        |
|                 | M2 rest of molecule correct                                                                     | M2 dep on M1                                                                   |          |
|                 | H N H                                                                                           | ALLOW any combination of dots and crosses                                      |          |
|                 | H                                                                                               |                                                                                |          |
|                 |                                                                                                 |                                                                                |          |
|                 |                                                                                                 |                                                                                | Total 10 |

|   | Question |       | Answer                                                                       | Notes                                                                                                  | Marks |
|---|----------|-------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------|
| 9 | (a)      | (i)   | carbon dioxide/a gas is given off/escapes                                    | REJECT incorrect gas                                                                                   | 1     |
|   |          | (ii)  | to prevent acid/ liquid/ solution/ spray from leaving the flask OWTTE        |                                                                                                        | 1     |
|   |          | (iii) | An explanation that links two of the following                               |                                                                                                        | 2     |
|   |          |       | M1 (insoluble) calcium sulfate will form                                     |                                                                                                        |       |
|   |          |       | M2 which will form a coating/ layer on the marble chips                      |                                                                                                        |       |
|   |          |       | M3 slowing down/ preventing/ stopping the reaction                           | M3 dep on M1 or M2                                                                                     |       |
|   |          |       |                                                                              |                                                                                                        |       |
|   | (b)      | (i)   | An explanation that links the following four points                          |                                                                                                        | 4     |
|   |          |       | M1 the curve is steep(est) at the start                                      |                                                                                                        |       |
|   |          |       | M2 because the (acid) concentration is high(est)                             | ALLOW there are the most (acid) particles in solution                                                  |       |
|   |          |       | M3 the curve becomes less steep as the solution/acid is becoming more dilute | ALLOW the curve<br>becomes less steep as<br>there are fewer acid<br>particles/particles in<br>solution |       |
|   |          |       | M4 the curve levels off/ stops going up when the acid has all been used up   | Solution                                                                                               |       |
|   |          |       |                                                                              | IGNORE references to particles of marble chips IGNORE references to energy                             |       |
|   |          |       | OR                                                                           |                                                                                                        |       |
|   |          |       | M1 the curve is steep(est) at the start                                      |                                                                                                        |       |
|   |          |       | M2 because the reaction is fast(est) at the start                            |                                                                                                        |       |
|   |          |       | M3 the curve becomes less steep because the reaction slows down              |                                                                                                        |       |
|   |          |       | M4 the curve levels off/stops going up when the acid has all been used up    |                                                                                                        |       |
|   |          |       |                                                                              |                                                                                                        |       |

| (ii) | M1 curve drawn starting at the origin and below the original curve | 2 |
|------|--------------------------------------------------------------------|---|
|      | M2 curve levels off at 0.27 g + or - half a small square           |   |

| Question number | Answer                                                                            | Notes                                                                        | Marks    |
|-----------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------|
| 9 (c)           | An explanation that links the following four points                               |                                                                              | 4        |
|                 | M1 the rate of reaction increases/ the reaction is faster/ the reaction speeds up |                                                                              |          |
|                 | and any three from                                                                |                                                                              |          |
|                 | <b>M2</b> because the particles gain (kinetic) energy /move faster                |                                                                              |          |
|                 | M3 there are more collisions per unit time                                        |                                                                              |          |
|                 | M4 more collisions/particles have energy greater than the activation energy       |                                                                              |          |
|                 | M5 more collisions are successful                                                 |                                                                              |          |
|                 |                                                                                   |                                                                              |          |
|                 |                                                                                   |                                                                              |          |
|                 |                                                                                   | there are more frequent successful collisions scores <b>M3</b> and <b>M5</b> |          |
|                 |                                                                                   |                                                                              | Total 14 |

| Qı | uestio | n     | America                                                                                                                                                                        | Notes                                                                | Marrica |
|----|--------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------|
| n  | umbe   | r     | Answer                                                                                                                                                                         | Notes                                                                | Marks   |
| 10 | (a)    | (i)   | so that the (hot) lead does not react with oxygen/air (converting back into lead oxide)                                                                                        | ACCEPT so that lead is<br>not oxidised (back to<br>lead oxide)       | 1       |
|    |        | (ii)  | M1 repeat the heating  M2 until the mass remains constant/ does not change                                                                                                     | ACCEPT heat to constant mass for both marks                          | 2       |
|    | (b)    | (i)   | 4.66 (g)                                                                                                                                                                       |                                                                      | 1       |
|    | , ,    | (ii)  | 0.48 (g)                                                                                                                                                                       |                                                                      | 1       |
|    |        | (iii) | <ul> <li>calculate the moles of lead and oxygen</li> <li>divide by the smaller number</li> <li>calculate the whole number ratio</li> <li>give the empirical formula</li> </ul> |                                                                      | 4       |
|    |        |       | Example calculation                                                                                                                                                            |                                                                      |         |
|    |        |       | M1 <u>4.66</u> and <u>0.48</u> OR 0.0225 and 0.03(00)  M2 <u>0.0225</u> and <u>0.03(00)</u> OR 1:1.33  0.0225                                                                  | Division by atomic<br>numbers or upside down<br>calculation scores 0 |         |
|    |        |       | M3 1 x 3 and 1.33 x 3 OR 3:4                                                                                                                                                   | 3:4 ratio without                                                    |         |
|    |        |       |                                                                                                                                                                                | working scores 3                                                     |         |
|    |        |       | <b>M4</b> Pb <sub>3</sub> O <sub>4</sub>                                                                                                                                       | Pb <sub>3</sub> O <sub>4</sub> without working scores 4              |         |
|    |        |       |                                                                                                                                                                                | ALLOW ECF from incorrect masses.                                     |         |
|    |        |       |                                                                                                                                                                                |                                                                      |         |

| Question number | Answer                                                                                                                                                                                                                                                                 | Notes                                                          | Marks    |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------|
| 10 (c) (i)      | $Pb(NO_3)_2$ (aq) + 2HCl (aq) $\Rightarrow$ $PbCl_2$ (s) + 2HNO <sub>3</sub> (aq)                                                                                                                                                                                      | ALLOW any combination of uppercase and lowercase letters       | 1        |
| (ii)            | <ul> <li>calculate the amount of PbCl<sub>2</sub></li> <li>multiply the moles by the M<sub>r</sub> of PbCl<sub>2</sub></li> <li>evaluation to show that the value is about 5 g Example calculation</li> <li>M1 n(PbCl<sub>2</sub>) = 0.0370 OR 0.0185 (mol)</li> </ul> |                                                                | 3        |
|                 | <b>M2</b> mass of PbCl <sub>2</sub> = 0.0185 x 278 (g)                                                                                                                                                                                                                 | <b>MAX 1</b> for 0.0370 x 278 if no division by 2 in <b>M1</b> |          |
|                 | <b>M3</b> 5.143 (g)                                                                                                                                                                                                                                                    | ALLOW any number of sig figs                                   |          |
|                 |                                                                                                                                                                                                                                                                        | 5.1, 5.14 and 5.143 g<br>without working score 3               |          |
|                 |                                                                                                                                                                                                                                                                        | 5 g without working scores 0                                   |          |
|                 |                                                                                                                                                                                                                                                                        | ALLOW alternative methods                                      |          |
|                 |                                                                                                                                                                                                                                                                        |                                                                |          |
|                 |                                                                                                                                                                                                                                                                        |                                                                |          |
|                 |                                                                                                                                                                                                                                                                        |                                                                |          |
|                 |                                                                                                                                                                                                                                                                        |                                                                |          |
|                 |                                                                                                                                                                                                                                                                        |                                                                | Total 13 |